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Three-dimensional two-component solitons, propagating in long-short wave resonance mode, are predicted.
If the spectrum of the short-wave component lies in the area of normal group velocity dispersion, these solitons
have transverse structure in the form of hole-vortex field defects on an infinite background. In the opposite case
two-component “bullets” or the “bright” vortex and the “bullet” with a hole in the center can exist. The
stability region of the considered objects is estimated on the basis of a variational approach. As a concrete
physical model we consider the propagation of electromagnetic pulses in a uniaxial crystal. Here the ordinary
component of the pulse is the short wave, and its extraordinary component is the long wave.
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I. INTRODUCTION

In recent decades investigation of three-dimensional lo-
calized wave objects has become one of the most important
directions in the area of nonlinear optics. There have been
found such spatiotemporal structures as optical bullets �1,2�,
X waves �or X solitons� �3�, vortex solitons �4,5�, etc. All
these achievements have been obtained using the slowly
varying envelope approximation �SVEA�. Such a traditional
approach is described in detail in the monographic literature
�6,7�.

The development of laser optics has involved producing
increasingly shorter pulses, down to few-cycle pulses �8�. In
this case the SVEA is not applicable, because such pulses
have a very broad spectrum. Therefore approaches have been
developed with model equations, which have been derived
directly for the pulse field �8–13�. The limiting case of few-
cycle pulses is the pulse in a half period of oscillation—i.e.,
presenting itself as a single hump without carrier frequency.
We will call such an object an ultimately short pulse �USP�.

It is well known that spatiotemporal localization is a re-
sult of the competition between nonlinear self-steepening
and dispersive-diffractive effects. It is important to notice a
specific aspect of the USP. The relative role of diffraction
effects in the case of quasimonochromatic pulses can be ex-
pressed by the relation � /R, where �=2�c /� is the wave-
length, � is the carrier frequency, c is the speed of light in
vacuum, and R is the characteristic transverse size of the
pulse. In the case of the USP the wavelength should be re-
placed by a pulse longitudinal size l� =�g�p, where �p is the
pulse temporal duration and �g is the group velocity.

The general theory of nonlinear waves admits the exis-
tence of special localized objects, which consist of both an
envelope �quasimonochromatic� soliton and USP soliton. For
example, it may be the model of the nonlinear Shrödinger
equation �NLSE� with temperature-dependent refractive in-
dex �14�.

In the present paper we examine another similar system,
first obtained in plasmas �15,16�, but recently found in a
process of nonlinear pulse propagation in dielectrics �17� and
also in phenomena, connected with electromagnetically in-
duced transparency �18�.

Let us consider the nonlinear propagation of an optical
pulse in uniaxial crystal more closely. This process is accom-
panied by the formation of two-component solitons. The in-
put ordinary quasimonochromatic pulse during the propaga-
tion generates an extraordinary wave in the form of a USP
soliton and experiences scattering of it. The ordinary compo-
nent obtains the shift � of the carrier frequency in the red
spectral range. The value of this shift is proportional to the
intensity of the component considered. The self-scattering
process mentioned is effective only if the condition of
Zakharov-Benney resonance is fulfilled �15�. According to
this condition, the group velocity �g of the ordinary compo-
nent is equal to the phase velocity �ph of the extraordinary
component.

However, the transverse structure of the solitons men-
tioned in more than one space dimension has currently not
been explored in detail. Taking into account the difference
discussed in transverse effects in case of quasimonochro-
matic and USP components it is possible to expect new fea-
tures in process of space-time localization. Thus, the goal of
the present work is to find out what types of three-
dimensional structures are possible.

The paper is organized as follows. In Secs. II and III we
derive three-dimensional nonlinear wave equations and ob-
tain their approximate stationary solutions under the condi-
tion of different signs of group velocity dispersion �GVD�.
The analysis is based on the variational approach. In Sec. IV
we consider the stability of solutions obtained and estimate
their existence region. Finally, in Sec. V we summarize our
results and give the conclusions.

II. MODEL EQUATIONS

Let us consider nonlinear propagation of optical pulses in
uniaxial crystal. We assume that the initial laser pulse polar-
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ization coincides with the polarization of ordinary waves.
The propagation occurs along the z axis, which is perpen-
dicular to the optical axis. The wave equation has form

�E − ��� · E� −
1

c2

�2E

�t2 =
4�

c2

�2P

�t2 , �1�

where E is the electric field and P is the macroscopic polar-
ization.

Henceforth, we will assume that diffraction effects are
weak �paraxial approximation� and the field components de-
pend mainly on z and t. We also consider that the spectrum
of the pulse lies in the transparency region of the crystal.
Therefore, the dispersion and nonlinear effects are relatively
small. In this case the polarization can be presented as a sum
P=Plin+Pnl of linear term Plin and term Pnl, including the
effects of nonlinearity and dispersion. From the Maxwell
equations it follows that � ·D=� · �E+4�P�=0. From here
we make an estimation � ·E=−4�� ·Pnl / �1+4��l�, where
�l is the linear inertialless susceptibility. The second term in
Eq. �1� is small by reason of the smallness of both nonlinear
parts of the medium response and diffraction effects. There-
fore, we neglect this term.

Thus, we obtain the following set of equations:

�Eo,e −
1

c2

�2Eo,e

�t2 =
4�

c2

�2Po,e

�t2 , �2�

where Eo is the ordinary pulse field component and Ee is its
extraordinary component.

We write corresponding polarizations in the form �17�

Po = �
0

	

�̃o�t��Eo�r,t − t��dt� + 2�eoEeEo, �3�

Pe = �
0

	

�̃e�t��Ee�r,t − t��dt� + �eeEe
2 + �eoEo

2, �4�

where �̃o�t�=�xx
�1��t� and �̃e�t�=�yy

�1��t� are the ordinary and
extraordinary components of linear electronic susceptibility
tensor taking into account the time delay of the response
�dispersion�. The coefficients �eo=�xxy

�2� and �ee=�yyy
�2� are the

nonlinear inertialless susceptibilities of second order.
Let us comment on expressions �3� and �4�. They reflect

the symmetry properties of the uniaxial medium. Since the
invariance with respect to spatial reflections is normal to the
optical axis, expressions �3� and �4� are invariant with re-
spect to transformations Po→−Po, Eo→−Eo, but the invari-
ance with respect to transformation Pe→−Pe, Ee→−Ee is
violated.

Let us consider that the ordinary field component is the
quasimonochromatic pulse. This means that the spectral
width 
���p

−1 of this component is much smaller than its
carrier frequency �—i.e., ��p�1. In this case the field of
ordinary components can be written in the form of an enve-
lope pulse

Eo�r,t� = ��r,t�exp�i��t − kz�� + c.c., �5�

where ��r , t� is the slowly varying envelope, � is the carrier
frequency, and k is the wave number.

Using the slow variation of envelope � at time scale t�, we
perform an expansion into a Taylor series in t�:

�
0

	

�̃o�t��Eo�r,t − t��dt� = ��o���� − i	 ��o

��

 ��

�t

−
1

2
	 �2�o

��2 
 �2�

�t2�exp�i��t − kz��

+ c.c., �6�

where the frequency susceptibility is

�o��� = �
0

	

�̃o�t��e−i�t�dt�.

As follows from Eq. �2� and expressions �3� and �4� the
extraordinary component can be centered at doubled fre-
quency 2� or zero frequency. The first case corresponds to a
well-known effect of second-harmonic generation. But here
we are mostly interested in the second one, which is the
generation of the USP �video pulse�.

The integrand in Eq. �4� can be expanded in t� due to the
relative smallness of dispersion effects:

�
0

	

�̃e�t��Ee�r,t − t��dt� = �e�0�Ee�r,t� − �e��0�
�Ee�r,t�

�t

−
�e��0�

2

�2Ee�r,t�
�t2 , �7�

where

�e�0� = �
0

	

�e�t��dt�

is the inertialless linear susceptibility and

�e��0� = �
0

	

t��e�t��dt�, �e��0� = − 2�
0

	

t�2�e�t��dt�.

Here we can neglect the term ��Ee /�t, which describes the
decay of the polarization response of a medium caused by
irreversible relaxation. The characteristic time T2 of this pro-
cess is contained in the constant �e��0�. The condition �p�T2

is fulfilled with good accuracy for picosecond pulses and a
broad class of crystals.

By substituting Eqs. �3� and �7� into Eq. �2� and neglect-
ing rapidly oscillating terms, we obtain

i	 ��

�z
+

1

�g

��

�t

 +

k2

2

�2�

��2 = �eo�Ee +
c

2n�
��� , �8�
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�2Ee

�z2 −
ne

2

c2

�2Ee

�t2 =
�2

�t2 ��oe���2 + �eeEe
2� − 
e

�4Ee

�t4 − ��Ee,

�9�

where �g=c / �n+���n /���� is the group velocity of the or-
dinary component, n=1+4��o��� and ne=1+4��e�0�
are the refractive indices of ordinary and extraordinary com-
ponents, respectively, k2=��g

−1 /�� is the parameter of GVD,
and �� is the transverse Laplacian. The constants �eo
=4��eo� /c, �oe=8��ee /c2, and �ee=4��eo /c2 describe the
nonlinear effects, and 
e=2��e��0� /c2 is the dispersion pa-
rameter of the extraordinary component.

It is visible from Eqs. �8� and �9� that the ordinary wave
plays a dominant role in pulse propagation. If the initial
pulse contains only ordinary waves, it can generate the video
pulse of extraordinary waves. The inverse process is forbid-
den. We should note that the interaction between pulse com-
ponents is the most effective when the condition of
Zakharov-Benney long-short wave resonance is fulfilled
�15�. This means that the group velocity of the ordinary com-
ponent is equal to the phase velocity of the extraordinary
component:

�g = c/ne. �10�

The ordinary wave also makes the main contribution to
dispersion, so we neglect the small term ��4Ee /�t4 in Eq.
�9�. Because of the smallness of the nonlinear and transverse
effects on the right-hand side of Eq. �9�, we can neglect the
reflected wave and apply the approximation of unidirectional
propagation. Summarizing this along with condition �10�, we
finally arrive at the following set of equations:

i
��

�z
+

k2

2

�2�

��2 − a�Ee� =
c

2n�
��� , �11�

�Ee

�z
+

�

��
�a���2 + bEe

2� =
c

2n
���

−	

�

Eed��, �12�

where �= t−z /�g is the “local” time, a=4��eo / �nec�, and b
=2��ee / �nec�.

In the one-dimensional case under condition b=0, when
the right-hand sides of Eqs. �11� and �12� are equal to zero,
this system transforms into the Yajima-Oikawa equations
�16�, which are a unidirectional version of the Zakharov
equations �15�. The Yajima-Oikawa system is integrable by
the method of inverse scattering transformation.

Our generalization of the integrable system mentioned in-
cludes transverse effects �diffraction� and quadratic nonlin-
earity, owned by the USP component. The last one is rather
small �17�, and we will account for it as a perturbation.

III. VARIATIONAL APPROACH

The influence of transverse effects on the solitons of sys-
tem �11�, �12� can be taken into account with the help of the
method of averaged Lagrangians �19–22�.

The system �11�, �12� has one-dimensional solitonlike so-
lutions. We write them as an expansion of the small param-
eter:

 =
8b

3a

�

�
���p�−2 �

bEe
2

a���2
� 1.

Assuming a�b, � /��104 �17�, and �p�1 ps we find 
�10−1–10−2. Thus, the one-dimensional solutions, obtained
with O�2� accuracy, have the form

� = �msech �	1 +


4
−


8
sech2�
e−i���+��, �13�

Ee = − Emsech2�	1 +


8
−

5

16
sech2�
 . �14�

Here

�m =
�k2�
a�p

�

�
, Em =

k2

a��p
2 , � =

�� + k2�z�
�p

,

� = 0.5k2��2 − �p
−2�z .

We should note that this solution has two free parameters:
the duration �p and the frequency shift �. We can also
present this set of parameters as duration and intensity, be-
cause � is proportional to the intensity of the ordinary com-
ponent, Io�c�m

2 /4� �see Eq. �13��.
Putting �p

−1→��r� and �→��r� into Eqs. �13� and �14�,
we obtain the three-dimensional approximate solutions

� = �m�p��r�sech ��e−i���+��r��	1 +
1

4
�p

2�2�r�

−
1

8
�p

2�2�r�sech2��
 , �15�

Ee = − Em�p
2�2�r�sech2��	1 +

1

8
�p

2�2�r�

−
5

16
�p

2�2�r�sech2��
 , �16�

where ��=��r���+k2�z�.
The new functions � and � define the inverse temporal

duration of the soliton and the eikonal of the quasimonochro-
matic component, respectively. For the purpose of correla-
tion between three-dimensional and one-dimensional solu-
tions we assume hereafter that �p

−1=max���z=0,x ,y��.
The Lagrangian density, corresponding to Eqs. �11� and

�12�, is given by the expression

L =
i

2
	���*

�z
− �*��

�z

 +

k2

2
� ��

��
�2

+ a����2
�Q

��
−

c

2n�
�����2

+
�

2

�Q

�z

�Q

��
−

c�

2n
���Q�2 +

�b

3
	 �Q

��

3

. �17�

The function Q is connected with the field of the extraordi-
nary component by the relation E=�Q /��.

After substitution of Eqs. �15� and �16� into Eq. �17� and
integrating over the temporal variable �, we find the aver-
aged Lagrangian
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� = �	 ��

�z
+

c

2n�
�����2
 +

1

6
k2�

3 −
1

10
�p

2k2�
5 −

1

2
k2�

2�

+
c

8n��0
2 �1 + ��p

2�2�
�����2

�
, �18�

where

� = � +
�p

2

3
�3, �0 = 3��2 + 12 +

�

�
��2 − 6��−1/2

,

� =
4

9
�0

2	�2

15
+ 2 +

�

2�

 .

Using Eq. �18� to write out the Euler-Lagrange equations
for functions � and �, we get

��

�z
+

c

n�
�������� = 0, �19�

��

�z
+

c

2n�
�����2 +

k2

2
��2 − �p

2�4 −�2�

=
c

2n��0
2��1 − ��p

2�2�
��

�
�

− 2��p
2����

��2� .

�20�

The system of Eqs. �19� and �20� obtained can be pre-
sented as a single equation for the complex function

� = � exp�i�0.5k2�
2z −��� . �21�

The corresponding equation looks like

i
��

�z
−

c

2n�
��� +

1

2
k2����4� − �p

2���8�� =
c

2n��0
2D̂�� ,

�22�

where the nonlinear operator D̂� is defined as follows:

D̂�� = �1 − �0
2�
�

���
����� − ��p

2���3������

− 2��p
2���2��������2. �23�

Thus, the averaged Lagrangian method can be used to
reduce the analysis of three-dimensional spatiotemporal soli-
tons to a solution of Eq. �22�, which describes the evolution
of soliton parameters. Similar equations are used for a de-
scription of the nonlinear dynamics of a spatial beam. An
important feature here is the presence of competing nonlin-
earities on the left-hand side of Eq. �22�. In the case of
anomalous GVD �k2�0� this often results in an arrest of the
collapse �6,7�.

Let us find stationary solutions of Eq. �22�. The corre-
sponding solution can be written as

� = �p
−1/2U�r�exp�i�qz + m��� , �24�

where r and � are the radial and angular components of the
cylindric coordinate system, q is the nonlinear shift of the
wave vector, and m=0, ±1, ±2, . . . is the topological charge
�vorticity� of soliton.

After simple transformations we obtain that the amplitude
U obeys the following equation:

�1 − �U4�	d2U

d�2 +
1

�

dU

d�

 − 2�U3	dU

d�

2

−
�2

�2 U + sgn�k2�

��U − U5 + U9� = 0, �25�

where �=r /Rs, Rs=c�p��0
2cn� �k2 � �−1/2, �=�0 �m�, and q=qs

=k2 /2�p
2.

Solving this equation we can find unknown functions in
approximate solutions �15� and �16�. They are given by the
formulas

� = �p
−1U2�r�	1 −



3
U4�r�
 , �26�

� =
k2

2
��2 − �p

−2�z + m� . �27�

In case of normal GVD �k2�0� the only possible local-
ized solutions are “dark” vortices on an infinite background.
The solutions mentioned can be obtained by solving Eq. �25�
numerically with boundary conditions U�0�=0, U�	�=U	

�0, where U	�1+ /4. The results are displayed in Fig.
1�a�.

FIG. 1. The solutions of Eq. �25� in a region of normal GVD with different � �a� and in a region of anomalous GVD with �=0 �b� and
�=1 �c�.
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The transverse structure of the ordinary component is a
“dark” vortex with zero field at the z axis. The wave vector
moves on the spiral, which is directed along the z axis. The
extraordinary component propagates synchronically with the
ordinary component. But instead of a vortex the last one has
a “hole” in the center. For this reason such a two-component
object under the condition k2�0 can be named a “dark-hole–
vortex soliton.” In reality any pulse has finite transverse size;
therefore, such objects may exist like some kind of field
defects on a quasi-one-dimensional pulse �see Fig. 2�a��.

Let us consider the situation with anomalous GVD—i.e.,
k2�0. In this case solutions, localized in the transverse di-
rection, are possible. The boundary conditions here corre-
spond to the fact that the function U��� and its derivatives
tend to zero while the coordinate � tends to infinity. Some
solutions of the equation mentioned are shown in Figs. 1�b�
and 1�c�.

The solution without a hole in the center ��=m=0� cor-
responds to a two-component light “bullet” �see Fig. 2�b��. If
�, m�0, the ordinary component has the localized structure
in form of a “bright” vortex. The field distribution has the
form of a torus as is shown in Fig. 2�c�. Starting from the
analogy from the case of positive GVD, we can call these
two-component localized objects with vortex structure
“bright hole-vortex solitons.”

The asymptotic behavior of the solutions discussed can be
found directly from Eq. �25�. Thus, we have near the center
of solutions with nonzero vorticity U���. In the case of
normal GVD this function tends to a nonzero background
value, while in the opposite case it vanishes exponentially.

We should note that both types of solutions exist only if
the value of  is lower than max. In case of “dark” vortices
max

�+� �0.25, while for localized solutions in the region with
anomalous GVD it is lowered to max

�−� �0.137. This situation
is typical for equations with competing nonlinearities �23�,
where a parameter of solutions lies in a limited area. We will
discuss this question further in Sec. IV.

As follows from the analysis, the vortex solutions can be
singular near the center. This means that transverse deriva-
tions of � tend to infinity at the point r=0. However, the
proper solutions must be smooth. Thus, the two first deriva-
tives �� /�r and �2� /�r2 should be finite. Using the asymp-
tote ��r2�, we find a restriction ��1, which means m
�mcr=1/�0 �m also must be an integer�. Thus, we have a
restriction on the topological charge, which depends on the
intensity of the ordinary component, because �0=�0��� and
�� Io.

Let us estimate some characteristic parameters in the sta-
tionary solutions. Assuming � /��10−4, we obtain that �0
�10−2 and mcr�102. Using the fact that k2�1/��g
�1/�c, we get Rs��0

−1l�, where l� =c�p is the characteristic
longitudinal size of the pulse. Assuming �p�1 ps we find
Rs�1 mm.

IV. STABILITY OF STATIONARY SOLUTIONS

An important instability in the case of localized three-
dimensional solutions is the wave collapse, which occurs
during the self-focusing process. We apply the variational
method of averaged Lagrangians again to estimate the stabil-
ity region of the solutions obtained. This approach can cor-
rectly predict the collapse of pulses. However, the corre-
sponding results are not clear when the weak azimuthal
instability is considered. The last one essentially occurs for
vortices with large topological charges. Per our suggestion
the instability caused by azimuthal perturbations may be in-
cluded implicitly. As follows from the comparison between
variational and linear stability analysis �the model of the
NLSE with cubic-quintic nonlinearities; see, e.g., �23�� the
variational approach gives a more or less acceptable predic-
tion for the stability region in the case of small topological
charges. In our case the variational method is more simple
and useful, so we restrict ourselves to this approximate
analysis.

We start from the Lagrangian density, corresponding to
Eq. �22�. It looks like

L� =
i

2
	���*

�z
− �*��

�z

 −

c

2n�
�����2 −

k2

6
���6 +

k2�p
2

10
���10

−
c

2n��0
2�1 + ��p

2���4��������2. �28�

The general form of the trial solution is given by the expres-
sion

� = �p
−1/2A�z�f�s�exp�i�q�z� + ��z�r2 + m��� , �29�

where s=r /R�z�.
The parameters A, R, �, and q correspond to the ampli-

tude, radius, chirp, and wave vector shift, respectively. The
function f may be selected in any form which approximates
the exact solution of Eq. �22�. After substitution of Eq. �29�
into the Lagrangian density �28� we need to integrate it over
transverse variables. Thus, we obtain the averaged Lagrang-
ian ��=2�p

3k2
−1�0

	L�rdr in the form

�� = J1A2R2 q�

�qs�
+ J2A2R4	 ��

�qs�
− 4�0

2Rs
2�2
 − sgn�k2�

��J3A6R2 − J4A10R2� − J5A2Rs
2 − �J6A6Rs

2. �30�

Here J1–J6 are positive constants:

J1 = �
0

	

sf2�s�ds, J2 = �
0

	

s3f2�s�ds ,

J3 =
1

3
�

0

	

sf6�s�ds, J4 =
1

5
�

0

	

sf10�s�ds ,

FIG. 2. An illustration of the field distribution �see approximate
solutions �15� and �16�, with account for expressions �26� and �27��
in the case of defect �a�, light “bullet” �b�, and “bright” vortex �c�.
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J5 = �2�
0

	

s−1f2�s�ds + �
0

	

s�f��s��2ds ,

J6 = �
0

	

sf4�s��f��s��2ds .

We start our analysis from consideration of solutions in
the form of field defects, which exist in the area of normal
GVD �k2�0�. We present the corresponding trial function
f�s� in the following form:

f�s� =
s�

�1 + s2��/2 . �31�

Assuming A=const, we neglect the influence of an infinite
background, focusing attention on the properties of solution.

Though the integrals J1–J6 are infinite, we can apply a
renormalization procedure to Eq. �30� using a presentation of
the � function through the � functions, and a property of the
gamma function ��x+1�=x��x�. Thus, we obtain

�� = C	� q�

�qs�
A2R2 −

� + 1

2
	 ��

�qs�
− 4�0

2Rs
2�2
A2R4

−
��3��
����

A6R2 + 
��5��
����

A10R2� + const,

where the infinite constant is C	=0.5���−1�.
Using the averaged Lagrangian to write out the Euler-

Lagrange equations in q, �, and R, we get the following
expressions:

dR2

dz
= 0, �32�

� = − �2�0
2�qs�Rs

2R�−1dR

dz
= 0, �33�

q� = �qs�	��3��
����

A4 − 
��5��
����

A8
 . �34�

Thus, this type of solution is a stationary object, which is
stable with respect to self-focusing.

Using the fact that for an exact solution q�= �qs�, we can
find from Eq. �34� the expression for the amplitude:

A4 =
5��3� + 1�

6��5� + 1�	1 −1 −


max
�+� 
 , �35�

where

max
�+� =

5��3� + 1�2

36��5� + 1���� + 1�
. �36�

The difference between analytic and numeric values of max
�+�

is significant, but the qualitative result for the dependence
A�� is right.

We now turn to the opposite case of anomalous GVD.
From Eq. �30� we get four Euler-Lagrange equations for the
parameters q, �, R, and A. The first equation

d�A2R2�
dz

= 0 �37�

gives us the connection between the radius and amplitude:

A�z� = A0
R0

R�z�
, �38�

where A0 and R0 are the initial values. Using that we obtain
from the second equation

� = − �4�0
2�qs�Rs

2R�−1dR

dz
. �39�

After simple transformations we find the following equations
for q and R:

q� =
J5�qs�Rs

2

J1
	 2

R2 −
5�1

2R4 + 
2�2

R6 + 
9�3

4R8
 , �40�

R� = −
��

�R
, �41�

where

� =
2�0

2J5qs
2Rs

4

J2
	 1

R2 −
�1

2R4 + 
�2

3R6 + 
�3

4R8
 . �42�

Here �1=2J3A0
4R0

4 /J5Rs
2, �2=3�J6A0

4R0
4 /J5, and �3

=4J4A0
8R0

8 /J5Rs
2.

As follows from Eq. �41�, the evolution of the radius and,
consequently, other parameters can be driven from the anal-
ogy with the motion of Newtonian particle in an external
field.

Let us apply the approximation

f�s� = s�exp�− s2/2� �43�

to calculate the parameters of the stationary solution. In this
case q�=−�qs�, R=R0, A=A0, and we also should imply two
conditions R�=0 and �2� /�R2�0. The first one demands the
solution be stationary. The second one is the requirement of

FIG. 3. The curve ��R� obtained numerically in case of a light
“bullet” ��=0� with different values of .
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its stability, which means that the parameters obtained must
correspond to a minimum of the potential �42� �see Fig. 3�.

Using Eqs. �40�–�42� we obtain the following expressions
for the amplitude,

A4 =
33���� + 1��10 − 3�� + 1� 
�Rs/R�2�

��3� + 1�

� 	1 −1 −
72
�2�� + 1��Rs/R�2 + 1�

��� + 1��10 − 3�� + 1� 
�Rs/R�2�2
 ,

�44�

and for the radius,

R2 =
�� + 1�g
Rs

2

16�1 − 
�
	1 +

g


4�1 − 
�
− 1
−1

, �45�

where

 = 4�max
�−� /�� + 1�, 
 = /max

�−� , g = 4 + 12 + 9 2
 .

It is noteworthy that we have a double restriction on  in this
case:

min
�−� � � max

�−� , �46�

where

max
�−� =

55�+2��3� + 1�2

4� 36�+4��� + 1���5� + 1�
, �47�

min
�−� =

max
�−� �9 2 + 28 + 12�

6 2

�	1 +
16 2�9 + 5�

�9 2 + 28 + 12�2 − 1
 . �48�

The upper limit is a condition of the existence of a solution,
while the lower limit is a condition of stability.

For �=1 we have max
�−� =0.099, so the agreement is rela-

tively good, despite the difference between Eq. �43� and the
actual shape of the solution.

To check the analytical predictions we make a numerical
calculation. For this purpose we do not take any analytical
approximation of f , but use the exact numerical solution f
�U, A0=1, and R0=Rs for the calculation of the coefficients
J1–J6. Assuming that the pulse has no initial chirp ��R�
=0, we can solve Eq. �41� numerically, using the conditions
R��0�=0 and R0=Rs. In case of stable solutions the radius
must have finite values, oscillating near the minimum of po-
tential �42� �see Fig. 3�.

The numerical results give min
�−� =0.063 in the case of light

“bullets” ��=0� and min
�−� =0.085 in the case of “bright” vor-

tices at �=1. Let us compare numerical and analytical re-
sults. We have min

�−� /max
�−� �num=0.46 and min

�−� /max
�−� �anal=0.51 in

the case of �=0. If �=1, we obtain min
�−� /max

�−� �num=0.62 and
min

�−� /max
�−� �anal=0.53. Thus, the agreement is obvious.

It is seen from Eqs. �13� and �14� that

 =
8b

3a
	Em

�m

2

�
8b

3a

Ie

Io
,

where Ie and Io are the intensities of the ordinary and extraor-
dinary pulse components, respectively. Starting from �46� we
can rewrite the condition of the existence stable two-
component “bright” solitons as follows:

3a

8b
min

�−� �
Ie

Io
�

3a

8b
max

�−� . �49�

Substituting here the expressions for a and b, we can re-
write this condition through internal parameters of the me-
dium:

3�eo

4�ee
min

�−� �
Ie

Io
�

3�eo

4�ee
max

�−� . �50�

If �ee=0, we obtain from �50� that the relation Ie / Io tends to
infinity. Therefore, the role of nonlinearity, owned by the
USP component, is essential for the stability of these soli-
tons.

V. CONCLUSION

Thus, in present work we predict certain types of three-
dimensional two-component optical pulses. The “dark” hole-
vortex solitons exist in an area of normal GVD. They have
the form of field defects on an infinite background. The
quasimonochromatic component has a vortex structure, and
the USP component has a “hole” in the center.

In the opposite case of anomalous GVD the existence of
fully localized structures is possible. The components may
have the form of light “bullets” or “bright” hole-vortex soli-
tons. The last ones also have hole-vortex structure as in the
case of normal GVD, but they are localized in all dimen-
sions.

The approximate stability analysis, made with a help of a
variational approach, had shown the stability of these struc-
tures with respect to self-focusing. The role of quadratic non-
linearity, owned by the USP component, is principal in the
arrest of collapse in an area of anomalous GVD. It may be
understood as the influence of the extraordinary component
on the refraction index of the ordinary component.

However, the question of stability of the structures dis-
cussed is still open. This especially relates to the azimuthal
instability of vortices with large charges. Full understanding
of the formation of these objects and their complete stability
analysis can be given in terms of future direct numerical
simulations.

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation of
Basic Research �Grant No. 05-02-16422a� �both authors� and
the Dynasty Foundation �A.N.B.�.

HOLE-VORTEX SOLITONS PHYSICAL REVIEW E 74, 066608 �2006�

066608-7



�1� Y. Silberberg, Opt. Lett. 15, 1282 �1990�.
�2� M. Blaauboer, B. A. Malomed, and G. Kurizki, Phys. Rev.

Lett. 84, 1906 �2000�.
�3� O. Jedrkiewicz, J. Trull, G. Valiulis, A. Piskarskas, C. Conti, S.

Trillo, and P. DiTrapani, Phys. Rev. E 68, 026610 �2003�.
�4� N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, Phys. Rev.

Lett. 95, 053903 �2005�.
�5� D. Mihalache, D. Mazilu, L. C. Crasovan, I. Towers, A. V.

Buryak, B. A. Malomed, L. Torner, J. P. Torres, and F. Lederer,
Phys. Rev. Lett. 88, 073902 �2002�.

�6� N. N. Akhmediev and A. Ankievicz, Nonlinear Pulses and
Beams �Chapman and Hall, London, 1997�.

�7� Yu. S. Kivshar and G. P. Agrawal, Optical Solitons �Academic
Press, Amsterdam, 2003�.

�8� T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 �2000�.
�9� S. A. Kozlov and S. V. Sazonov, JETP 84, 221 �1997�.

�10� M. A. Porras, Phys. Rev. E 65, 026606 �2002�.
�11� P. M. Bennet and A. Aceves, Physica D 184, 352 �2003�.
�12� S. V. Sazonov and V. A. Khalyapin, Quantum Electron. 34,

1057 �2004�.

�13� A. N. Berkovsky, S. A. Kozlov, and Yu. A. Shpolyanskiy,
Phys. Rev. A 72, 043821 �2005�.

�14� D. Mihalache, D. Mazilu, F. Lederer, B. A. Malomed, Y. V.
Kartashov, L.-C. Crasovan, and L. Torner, Phys. Rev. E 73,
025601�R� �2006�.

�15� V. E. Zakharov, Sov. Phys. JETP 35, 908 �1972�.
�16� N. Yajima and M. Oikawa, Prog. Theor. Phys. 56, 1719

�1976�.
�17� S. V. Sazonov and A. F. Sobolevskii, Quantum Electron. 35,

1019 �2005�.
�18� S. V. Sazonov, JETP 101, 979 �2005�.
�19� D. Anderson, Phys. Rev. A 27, 3135 �1983�.
�20� S. K. Zhdanov and B. A. Trubnikov, Sov. Phys. JETP 65, 904

�1987�.
�21� S. V. Sazonov, JETP 98, 1237 �2004�.
�22� A. N. Bugay and S. V. Sazonov, J. Opt. B: Quantum Semiclas-

sical Opt. 6, 328 �2004�.
�23� M. Quiroga-Teixeiro and H. Michinel, J. Opt. Soc. Am. B 14,

2004 �1997�.

ALEKSANDR N. BUGAY AND SERGEY V. SAZONOV PHYSICAL REVIEW E 74, 066608 �2006�

066608-8


